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Abstract
Next generation embedded systems place new demands

on an efficient methodology for their design and verifica-
tion. These systems have to support interaction over a net-
work, multiple concurrent applications and changing
operating conditions. Therefore, besides existing require-
ments like low cost and high performance, new demands
like adaptivity and reconfigurability arise. Traditional
design methodologies do not support exploration and
implementation of this flavor of networked embedded sys-
tems. In this paper, we present a suitable methodology and
a flexible experimental environment which supports design
exploration and prototyping of dynamically reconfigurable
embedded systems based on Java specifications.

1. Introduction

Today, electronic products face a heterogeneous, rapidly
changing market in which the key factors for success are
efficient product development and the ability to quickly
respond to customer demands. This leads to the require-
ment that a product should not only be adaptive via soft-
ware updates, but it should also be flexible within the
hardware part via field programmable hardware. The situa-
tion becomes even worse for embedded systems because in
many cases their behavior has to be adaptive to the working
environment. More specifically, we consider networked
embedded systems which are able to run multiple concur-
rent real-time media applications such as audio and video.
For instance the frame rate of a video stream is changed by
the video application manager if the network is congested.
Thus a trade-off between picture quality and bandwidth of
the network becomes possible. In audio applications, com-
pletely different compression algorithms are employed
depending on network load [11].

Combining programmable hardware, such as field-pro-
grammable gate arrays (FPGAs) with microcontrollers or
even digital signal processors (DSPs) gives an entire adap-
tive system. However, a flexible, configurable hardware
solution is also associated with costs in terms of area and
timing performance when compared to ASIC designs. As a
trade-off, hybrid embedded systems with partially fixed
and partially adaptable hardware combined with a proces-
sor are employed.

Our target architecture basically consists of a set of pro-
cessing elements (processors, FPGAs) which execute con-

currently. Therefore, the specification language must
support constructs for expressing concurrency. Several lan-
guages have been proposed for describing embedded sys-
tems [4], [5]. We decided to use Java which was originally
designed for the use in embedded electronic applications to
overcome the major weaknesses of C and C++ [3]. Java is a
multi-threaded language and supports system descriptions
as sets of concurrent behaviors. As Java has certain built-in
multi-threading primitives, expressing concurrency and
management of different flows of control is greatly simpli-
fied. Threads also provide an efficient way for task distribu-
tion and multiprocessing. Java has all benefits of object-
oriented languages. Because of its class, package and inter-
face concept, it encourages modular and small programs.
Especially for designing embedded systems, features like
multi-threading, exception handling, synchronization, code
reuse (e.g.Java Beans), security and network programming
(e.g. function shipping for maintenance and software
updates) are of great importance. The prospect of commu-
nicating with an embedded system from anywhere on the
Internet is pushing more and more designers towards Java
[12]. For modeling real-time systems, language extensions
have been proposed [9], [10]. However, the major issue
which currently hinders the wide-spread adoption of Java
as a development language is its execution performance.
But as soon as just-in-time compilation tools and native
code compilers mature, the performance gap will be closed
and Java will increasingly be adopted in the domain of
embedded hardware/software systems.

Related work concerning networked embedded systems
concentrates on developing stochastic models for perfor-
mance verification [6]. Our goal is to provide a semi-auto-
mated co-synthesis and co-simulation framework which
supports fast prototyping of hardware/software systems
specified in the Java language. Within this co-design envi-
ronment, it is possible to evaluate different design alterna-
tives and gather profiling information during execution of
the alternative prototype designs within a simulation test-
bench. The most appropriate mapping of functionality to
hardware and software parts is determined in the partition-
ing step. Also, portions of the design which are imple-
mented in reconfigurable hardware and portions which
remain unchanged during run-time can be identified. Back-
annotation of data gathered during the co-synthesis, co-
emulation, and profiling steps provides the necessary infor-
mation to guide the partitioning and optimization process.



The remainder of this paper is organized as follows. In
section 2 we introduce the new concept for co-synthesis
and co-simulation of reconfigurable hardware/software
systems based on the Java specification. This includes code
generation for software and hardware parts, generation of
the hardware/software interface and managing the execu-
tion of the generated prototype. The current implementa-
tion of the experimental hardware platform and results are
presented in section 3. Finally, some concluding remarks
and an overview of our future work are given in section 4.

2. Co-synthesis environment

Our framework supports a software oriented strategy for
co-synthesis as we start from a Java specification and iden-
tify parts which are to be implemented in hardware. In con-
trast to previous approaches we integrate co-verification of
the system prototype by co-emulation of the hardware/soft-
ware architecture. Verifying the correct interaction between
software and hardware is a key problem in the design of a
combined system. Thus, we propose a design flow which
includes a complete synthesis flow and accommodates fast
prototyping. After identifying a suitable partitioning of the
system, the appropriate hardware/software interface is gen-
erated by an interface generator. The software part is
instrumented and bytecode is generated for execution on
the Java virtual machine. The hardware part is synthesized
and mapped to the reconfigurable FPGA target platform.
The interface is partially realized in software and in hard-
ware. The complete design flow of the prototyping environ-
ment is shown in figure 1. A description of the individual
steps is given in the following.

2.1 Partitioning

During the specification phase, only the software branch
(left path in figure 1) is used for functional validation and
profiling. After that, the initial specification is partitioned
into a part for the execution on the host PC (software meth-
ods) and a part which is executed onto the FPGA hardware
platform (hardware methods). Currently, the granularity of
the partitioning is the level of Java methods. For future
environments, a partitioning based on loops or on basic
block level will be examined. All methods chosen for hard-
ware can also run on the host PC, but not vice versa. This
means that during code generation bytecode is generated
for all methods whereas FPGA configuration files are gen-
erated for the individual hardware methods only. The run-
time system (RTS) reads information from the partitioning
step and decides according to the partitioning whether a
method is scheduled onto the host PC or onto the FPGA
hardware. The RTS also manages dynamic reconfiguration
of the hardware at run-time.

For each hardware method, an interface description is
automatically generated. It consists of a RT-level VHDL
frame for inclusion into the hardware building block, and a
hardware method call for inclusion into the software code.

Code generation for the hardware as well as for the soft-
ware part is based on the Java compilerguavac [1]. Guavac
consists of a scanner, lexical analyzer, and a part for the
evaluation of the internal tree representation. The transla-
tion of a Java method into bytecode or VHDL is sketched

in figure 2. Up to the internal tree representation, code gen-
eration for hardware and for software is both the same. The
input is divided by the scanner into a token stream. Next,
the tokens are mapped to an internal tree representation
(expression trees) according to the semantic rules. Of
course, also manually designed VHDL components can be
used for the hardware part.

2.2 Hardware code generation

Code generation for the hardware part consists of three
major steps:

• High-level synthesis (HLS) of the selected Java
methods, which are to be implemented in hardware
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• Register-transfer-level synthesis of the VHDL
description which has been generated by the HLS Tool
in the previous step and logic optimization of the
resulting netlist

• Layout synthesis and generation of the configuration
data for the target FPGA hardware platform

High-level synthesis. In the high-level synthesis step,
main emphasis was laid on producing synthesizable VHDL
code. Semi-automatic synthesis will be an essential feature
of our co-design framework, as we want to encourage itera-
tions during the design exploration phase. Therefore, a syn-
thesis tool has been developed, which is based on an
operator library. For all selected Java methods which com-
ply with the restrictions of our current library synthesizable
VHDL is generated. Based on the internal tree representa-
tion, high-level synthesis step is performed using standard
techniques. The design representation is split into a data-
path part and a controller part. Expressions and statements
are converted into corresponding VHDL constructs for a
datapath description. The sequence of execution and loop
control constructs as well as conditional constructs are
transformed into a finite state machine (FSM) representa-
tion. The HLS tool also produces corresponding synthesis
scripts which are used afterwards for logic synthesis.
RT-level synthesis. The output of the HLS step is a reg-
ister-transfer level description containing combinational
building blocks for the datapath and a finite state machine
for the controller part. Before logic synthesis of the RT-

level description, an automatically generated VHDL frame
for interfacing the hardware method to the software parti-
tion is added to the hardware description produced in the
previous step. The VHDL frame consists of a reconfigura-
tion controller and an interface for passing arguments and
results to the Java hardware method. This interface is
described in more detail in section 2.4. The complete RT-
level description is synthesized with SYNOPSYS DESIGN
COMPILER.
Technology mapping, placement and routing. The
resulting EDIF netlist of the RTL synthesis step is further
processed with commercial tools. After technology map-
ping, placement and routing has succeeded, a valid config-
uration file for the hardware method is written. This file is
added to a hardware method library. The run-time system
takes the necessary configuration files from this library.

If the placement and routing fails for the target FPGA
device, no configuration file is generated and of course
none can be added to the hardware method library. Thus,
this method has to be executed on the host PC. Currently,
no support for partitioning a single hardware method onto
several FPGA devices has been implemented. Besides this
semi-automatic code generation for the hardware, manu-
ally designed configuration files for the FPGAs can be inte-
grated as native methods into the Java code.

2.3 Software code generation

Code generation for software part is done using conven-
tional compilation methods. As mentioned earlier the Java
Parser transforms the specification into a token stream
(figure 2). From the token stream the expression trees are
built according to grammatical rules. Possible optimization
of the code can occur at this stage. A list of all expression
trees is processed to get a list of bytecodes which are saved
as.class-files. These object files are stored in the software
method database (refer to figure 1).

2.4 Interfacing hardware and software

In order to facilitate the exchange of data between the
hardware and the software part of the system a special
interface concept and an automated interface generator
have been developed.
The software part. Since the chosen level of granularity
is the Java method level, only little extensions were neces-
sary on the software side. As previously mentioned, in the
current implementation of our co-design environment soft-
ware methods are executed by the interpreter. For
interpreting Java bytecode, we use the GNU Interpreter
KAFFE, as the sources are in the public domain. For using it
in our co-design framework several extensions to the inter-
preter were necessary. First, the interpreter must be able to
read in the partitioning information, i.e. which function is
to be executed in hardware and which method in software.
If the control flow during bytecode interpretation reaches a
hardware method, then mechanisms for synchronization
and communication become necessary. Method arguments
have to be delivered to the hardware driver and the corre-
sponding results must be read back. During execution of a
method in hardware, the calling thread in software is sus-
pended. The calling thread resumes normal operation after

Fig. 2. Transformation of the Java specification into
bytecode and RT-level VHDL

int func(int a)
{

int z,r = 0;
for (z=0; z<a; z++)
r += a;

return r;}

int z , r =
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ENTITY ex_func IS
PORT(clk:IN std_logic;
reset: IN std_logic;
...
A_1: IN JAVA_INT;
RET: OUT JAVA_INT);

ARCHITECTURE HW
of ex_func IS
COMPONENT add_int
PORT(...)
...
WHEN State_3 ...
RET <= VI_3;
...

JAVA Comp.

Token Stream

Internal Tree Representation

JAVA Bytecode VHDL Component

PARSER

HL Synth.



the results of the hardware method have been sent back. In
the current implementation only one thread at a time is
allowed to access the emulation hardware, therefore a suit-
able synchronization mechanism has been implemented.
For evaluating system performance, the interpreter had to
be equipped with functions for gathering profiling data.
Therefore, routines for measuring times for data processing
and for communication between hardware and software
had to be integrated in the Java run time system.
The hardware part. The same way the software part had
to be extended for communication, the hardware design
also needs extensions for exchanging information when-
ever a request for processing data occurs. Thus, a concept
for a flexible, parameterizable communication interface for
the hardware design has been developed. Depending on the
number and size of arguments that the hardware method
has to process, an appropriate interface frame is generated
for each Java hardware method. The interface generator
uses information provided by the high-level synthesis tool
and automatically generates a register-transfer level
description of the VHDL frame with the correct size. The
structure of this interface frame is depicted in figure 3. The
frame consists of a set of registers for storing input and out-
put data of the corresponding Java method. Furthermore, it
contains a small logic block for handling control signals
which are necessary for interaction with the run-time sys-
tem. This includes signals for starting, resetting the hard-
ware process and a ready signal which indicates that the
computation in hardware has finished and that the results
can be read back.

The VHDL component for the Java hardware method
which has been generated during high-level synthesis is
embedded into the VHDL frame produced by the interface
generator. Then the complete design is synthesized for the
FPGA platform as described in section 2.2.

2.5 Run-time system

The run-time system (RTS) is responsible for managing
execution and interaction of hardware and software meth-
ods. Therefore, it relies on a database which contains the
set of methods which are executable in either hardware or
software and a number of methods for which both hard-
ware and software implementations are available. The soft-
ware executables (Java classes) are stored in Java bytecode
format and the corresponding hardware blocks which are
emulated on the FPGA board are stored as configuration
bitfiles.

During co-simulation the run-time system schedules
methods for execution according to the current partitioning

table. Software methods are executed on the Java Virtual
Machine (JVM) on the host workstation as shown in
figure 1. As we chose a software-oriented approach, the
execution flow of the combined system is dominated by the
software part of the system.

The run-time system also manages execution of tasks on
the emulation platform. The set of currently available
FPGAs and communication channels is specified in a con-
figuration file. During co-simulation when control flow in
one of the threads reaches a hardware method, the run-time
system determines whether the corresponding configura-
tion bitfile has already been downloaded to an FPGA. At
the beginning of the co-simulation procedure none of the
FPGAs is configured with a bitstream. In this case, the run-
time system determines an available FPGA and triggers the
download mechanism. In case the bitfile has already been
downloaded to an FPGA, the RTS determines the address
of the FPGA containing the currently requested hardware
method, and starts transfer of data which has to be pro-
cessed by this method. After the emulated method has fin-
ished processing, it sends an interrupt signal to the RTS and
the results from the computation can be read from the
result register of the FPGA design. As previously men-
tioned, only one thread at a time is allowed to access the
emulation hardware in our current implementation. During
emulation of a hardware method on the FPGA, the calling
thread is suspended but any other software thread can be
executed on the Java virtual machine at the same time.

2.6 Simulation and Refinement
Executing simulation with the actual hardware gives

feedback for the initial partitioning process via the profil-
ing step. The prototype is executed in a testbench environ-
ment where several test cases exist in a test library. These
test cases consist of data sets for the execution of the Java
specification. A profiling step measures execution times for
the hardware and the software part, as well as the commu-
nication time via the interface. These results are directly
fed back to the partitioning process. The goal is to improve
the partitioning especially when the granularity of the par-
titioned parts changes or if methods are clustered. This
feedback loop is currently under development.

3. Experimental results

For verifying the feasibility and studying different con-
cepts of our new approach, an implementation of the pro-
posed design flow and the corresponding hardware/
software co-emulation engine has been done. Our initial
implementation was based on an dedicated prototyping
board containing four SRAM based FPGAs [2]. This solu-
tion was found to be inefficient for dynamically reconfig-
urable embedded systems. Chip reconfiguration requires
too much time in traditional FPGA architecture, and partial
reconfiguration during run-time is impossible. Further-
more, a rather sophisticated mechanism for interfacing
between processor and FPGA hardware had to be devel-
oped. Because of these experiences, we decided to use a
new FPGA architecture in our new implementation which
overcomes this limitations. An overview of the hardware/
software prototyping platform is given in figure 4.Fig. 3. VHDL frame
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Hardware. The workstation is used to enter the Java
specification, compiling Java to bytecode and executing the
bytecode for the software part of the system. Furthermore,
the different synthesis tasks necessary for moving dedi-
cated Java methods to the FPGA emulation board are car-
ried out on the host workstation. The run-time system is
also implemented in software on the host. For implement-
ing the hardware part of a prototype, a dedicated FPGA
board is connected to the workstation over the PCI bus. We
used the XC6200DS board which basically provides a PCI
interface, and a reconfigurable processing unit XC6216.
The card also includes two banks of memory, which may
be accessed from either the FPGA or the PCI bus. For a
more detailed description see [8].

Performance. For evaluating the performance of our
platform and identifying bottlenecks, we used some small
data-oriented examples specified in Java. The XC6216
reconfigurable processing unit that is currently used has a
very limited gate capacity (approx. 16000 gate equiv.).
Larger design examples will be tested as soon as a larger
chip of the XC6200 family or a board with more chips is
available. The most prominent feature of this FPGA is its
integrated microprocessor interface. As this interface sup-
ports direct register reads and writes over an address and a
data bus. Thus transfer of arguments and results between
hardware and software parts of the prototype is greatly sim-
plified (‘wireless I/O’). Similar to a memory access, all
configurable cells and registers on the chip can be read
from and written to at run-time. The second important fea-
ture for our target application area is the high-speed recon-
figuration capability of the chip, which is mandatory in a
system which has to adapt to different operating condi-
tions. For our sample designs the times needed for recon-
figuration of the complete hardware part varied between 18
and 300 ms depending on the size of the design. After addi-
tional optimization of reconfiguration process over the PCI
interface of our board, these times have been cut down to
4.5 to 29 ms. When testing the speed of the hardware/soft-
ware interface, we found that in one second about 84000
register writes (32bit) or 63000 register reads are possible.
However, the PCI interface implementation on the
XC6200DS board has been identified as a bottleneck. For
reading and writing to the on-board SRAM, only data
transfer rates of about 4 and 7 MB/s respectively can be
obtained (depending on board frequency) and this is signif-
icantly lower than in typical PCI applications. Related
research [7] showed that with the XC6216 significant
speedups for image processing applications can be
obtained. For estimation of worst case behavior, we used an
application consisting mostly of multiply and add opera-
tions, which are ideally suited for a standard microproces-

sor like a cached Pentium 133 as used in our host PC. For
our dynamic Java application (including 3 hardware
designs; 82 dynamic reconfigurations) execution times of
4.1s for the hardware/software prototype compared to 2.8s
for the pure software execution were measured. These are
very promising results concerning performance of the exe-
cution of a hardware/software system prototype, as 80-90%
of the execution time are due to communication over the
PCI interface. Therefore, we will benefit greatly from an
improved version of the PCI interface which will become
available in the near future.

4. Conclusions

When developing complex systems, intelligent trade-offs
between hardware and software components are necessary to
deliver the design best satisfying performance and cost con-
straints. Therefore, designers need a complete development
framework that facilitates such trade-offs. A new concept for
tool-assisted design exploration and fast prototyping of hard-
ware/software systems has been proposed in this paper.
Starting from a system specification in Java, a novel design
flow has been presented which is targeted to next generation
embedded systems including reconfigurable hardware. It
supports trade-off evaluation, interface generation and verifi-
cation of the design by co-emulation. The focus of current
research is on the implementation of different signal process-
ing applications within the prototyping framework. Future
work will concentrate on integrating a seamless VHDL to
FPGA synthesis design flow. For instance, currently avail-
able tools for this new FPGA architecture still require man-
ual intervention of the designer during layout synthesis.
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